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The Data

Method Bottle Day Conc.
1 1 1 0.58
1 2 1 0.51
1 3 1 0.59
1 4 1 0.52
1 5 1 0.51
1 6 1 0.49
1 7 1 0.61
1 8 1 0.50
1 9 1 0.60
1 10 1 0.68
2 11 3 0.47
2 12 4 0.43
2 13 2 0.46
2 14 3 0.39
2 15 4 0.40
2 16 2 0.41
2 11 5 0.51
2 12 7 0.52
2 13 5 0.52
2 14 6 0.42
2 15 7 0.48
2 16 5 0.52

This table lists the concentrations of Benzo[c]phenanthrene

in SRM 1975, Diesel Extract. How would we use these

data to obtain a consensus value and related uncertain-

ties?
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Data Plot
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Method 1 Method 2

Benzo[c]phenanthrene in SRM 1975:
Data,Means, and 2-Sigma Intervals

This schematic describes how the concentration levels

found by Method 1 tend to higher than those found by

Method 2. Thus, we cannot treat all the observations

as coming from identical distributions.
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Outline

We will use the following models to try de-

scribe the variation between the results for the

di�erent methods:

� Model 1: Individual t-Densities

� Model 2: The `Behrens-Fisher Problem'

� Model 3: Two-Level Hierarchical Model for

Means; One-Level for Variances
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On Bayesian Prior and Posterior

Distributions

If xij is the jth observation from the ith sam-

ple, then xij is often modeled as being gener-

ated from a distribution p(xijj�1; �2; : : :), which
is dependent on a set of parameters �1; �2; : : :.

One of the most common used models is the

familiar bell-shaped distribution known as the

normal distribution:

p(xj�; �2) = N(xj�; �2);
which stands for a Normal distribution with

mean � and variance �2.

Previous knowledge about the parameters is

incorporated in prior distributions of that pa-

rameter. For example, it may be known that

� has itself the distribution p(�) = N(a; b2) for

some a; b.
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For the cases where there is little or no worth-

while prior information, \non-informative" or

\objective" priors may be used. A common

non-informative prior for the mean is the 
at

prior p(�) / 1. A common non-informative

prior for the standard deviation is p(�) / 1=�:

Note that prior distributions do not have to be

proper probability distributions (i.e. they do

not have to integrate out to 1).

In a simple case, given the prior distribution of

the parameter �(�) and the data fxig, we can

compute the posterior distribution

p(�jfxig) =
Z
p(fxigj�) � �(�)d�:

The posterior distribution p(�jfxig) encapsu-

lates our best knowledge about � given both

the data and our prior knowledge.
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For simpler cases, the posterior distributions

can be calculated analytically. For more com-

plicated cases, the posteriors can be generated

via Markov Chain Monte Carlo techniques us-

ing the freely available BUGS (Bayesian analy-

sis Using Gibbs Sampling) software. A sample

BUGS program is on page 18.

BUGS does not work with improper distribu-

tions, so a 
at prior may be approximated by a

normal distribution with a very large variance,

and the prior p(�) / 1=� can be approximated

by a very di�use Gamma distribution. Note

that in BUGS, the Precision � = 1=�2 rather

than the variance is the input parameter to the

Normal (and other) distributions.
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Model 1:

Separate Means, Separate Variances

p(xijj�i; �2i ) = N(�i; �
2
i )

p(�i) / 1

p(�i) / 1=�i

Here we model the measurements from the

two methods as coming from two di�erent nor-

mal distributions. In addition, we have mod-

eled the parameters of the normal distributions

with traditional \non-informative" prior distri-

butions (note that prior distributions do not

need to be proper probability distributions).
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Model 1 Posteriors: t-Densities

Given the model of the previous page, we can

now calculate the posterior distributions of the

method means �1 and �2 given the data
n
xij
o
:

p
�
�ij
n
xij
o�

=

p
ni

si
T 0ni�1

 
�i � �xi
si=

p
ni

!

Where �xi, si and ni are summary statistics for

the ith method, and T 0(�)� denotes a t-density

with � degrees of freedom.

Here we can calculate the form of the posterior

analytically. For more complicated situations

we can simulate the posterior very accurately

using Markov Chain Monte Carlo techniques

and BUGS (Bayesian analysis Using Gibbs Sam-

pling) software.
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Model 1 Posterior for

Benzo[c]phenanthrene
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Here we see the posterior density functions of

the method means �1 and �2 given the datan
xij
o
.

9



Model 2:

Common Mean, Separate Variances

(Behrens-Fisher Problem)

p(xijj�; �2i ) = N(�; �2i )

p(�) / 1

p(�i) / 1=�i

Here we model the observations from the dif-

ferent methods as coming from normal distri-

butions with the same mean, but with di�er-

ent variances. The parameters of those nor-

mal distributions are again modeled with non-

informative priors.
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Model 2 Posterior: Poly-t Density

We can calculate analytically the posterior dis-

tribution of the common mean � given the datan
xij
o
:

p
�
�j
n
xij
o�

/
2Y

i=1

p
ni

si
T 0ni�1

 
� � �xi
si=

p
ni

!

Where �xi, si and ni are summary statistics for

the ith method, and T 0(�)� denotes a t-density

with � degrees of freedom.

For two methods, this posterior is related to

the Behrens-Fisher distribution, but the result

holds for an arbitrary number of methods [Poly-

t distribution; See Box and Tiao, Bayesian In-

ference in Statistical Analysis (1973, Ch. 9)].
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Model 2 Posterior for

Benzo[c]phenanthrene
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Model 3:

Two Levels for Mean, One Level for

Variances

This is a hierarchical model where the method

means are modeled to come from a normal

prior distribution, and the parameters of that

normal distribution have prior distributions of

their own.

p(xijj�i; �2i ) = N(�i; �
2
i )

p(�i) = N(�; �2)

p(�i) / 1=�i

p(�) / 1

p(�) \Arbitrary"

(Note that p(�) cannot blow up at � = 0, since

the likelihood will be nonzero there, and hence

the posterior would be improper.)
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Model 3 Posteriors: Generalization of

Poly�t

Again we can analytically calculate the poste-

riors using t distributions:

p(�; �jfxijg) / p(�)
kY

i=1

p
ni

si
fni�1

"
�xi � �

si=
p
ni
;
2ni�

2

s2i

#
:

Where

f� (u; ) � 1

��=2
p
�

Z
1

0

y(�+1)=2�1e
�y
h
1+ u2

 y+�

i
p
 y+ �

dy:

is the density of

U = T� + Z

s
 

2

This result holds for k methods, not just for

k = 2.

14



The Need for an Informative Prior on �

� A frequentist is in serious trouble when the

methods are regarded as `random', since

there is only one degree of freedom be-

tween methods.

� A Bayesian trying to get `objective' approx-

imate frequentist results will have the same

diÆculty. (Tansta�: There's no such thing

as a free lunch.)

� We need a proper prior on �, and of course

there are many `reasonable' choices. For

illustration, let

p(�) = U(:025; :25);

the Uniform (Rectangular) distribution be-

tween .025 and .25.
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Model 3 Posterior for

Benzo[c]phenanthrene
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 sigma ~ U(.025,.25)
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Model 3 Bayesian Credible Interval
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Comparison of Model 3 Interval with t-Intervals
sigma ~ U(.025,.25)

The Bayes interval in this case is large enough

to encompass both method means.
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BUGS Code for Model 3 Posterior

Calculations

model twolvl;
const

SAMPLES = 22,
METHODS = 2;

var
x[SAMPLES], mth[SAMPLES],
theta[METHODS], tau.within[METHODS],
mu, tau.between;

data mth,x in "bcp.dat";
inits in "bcp.in";
{
for (i in 1:SAMPLES) {

x[i] ~ dnorm(theta[mth[i]], tau.within[mth[i]]);
}

for (i in 1:METHODS) {
tau.within[i] ~ dgamma(0.001, 0.001);
theta[i] ~ dnorm(mu, tau.between);

}
tau.between ~ dunif(16,1600);
mu ~ dnorm(0, 1.E-10);
}
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